Discrete Wavelets Associated with DUNKL Operator on Real Line

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dunkl Translation and Uncentered Maximal Operator on the Real Line

On the real line, the Dunkl operators are differential-difference operators introduced in 1989 by Dunkl [1] and are denoted by Λα, where α is a real parameter > −1/2. These operators are associated with the reflection group Z2 on R. The Dunkl kernel Eα is used to define the Dunkl transform α which was introduced by Dunkl in [2]. Rösler in [3] shows that the Dunkl kernels verify a product formul...

متن کامل

Characterization of Besov Spaces for the Dunkl Operator on the Real Line

In this paper, we define subspaces of L by differences using the Dunkl translation operators that we call Besov-Dunkl spaces. We provide characterization of these spaces by the Dunkl convolution.

متن کامل

Dunkl wavelets and applications to inversion of the Dunkl intertwining operator and its dual

These operators are very important inmathematics and physics. They allow the development of generalized wavelets from generalized continuous classical wavelet analysis. Moreover, we have proved in [2] that the generalized two-scale equation associated with the Dunkl operator has a solution and then we can define continuous multiresolution analysis. Dunkl has proved in [1] that there exists a un...

متن کامل

q-ANALOGUE OF THE DUNKL TRANSFORM ON THE REAL LINE

In this paper, we consider a q-analogue of the Dunkl operator on R, we define and study its associated Fourier transform which is a q-analogue of the Dunkl transform. In addition to several properties, we establish an inversion formula and prove a Plancherel theorem for this q-Dunkl transform. Next, we study the q-Dunkl intertwining operator and its dual via the q-analogues of the Riemann-Liouv...

متن کامل

Wavelets associated with Nonuniform Multiresolution Analysis on positive Half-Line

Gabardo and Nashed have studied nonuniform multiresolution analysis based on the theory of spectral pairs in a series of papers, see Refs. 4 and 5. Farkov,3 has extended the notion of multiresolution analysis on locally compact Abelian groups and constructed the compactly supported orthogonal p-wavelets on L(R+). We have considered the nonuniform multiresolution analysis on positive half-line. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Applications

سال: 2016

ISSN: 0975-8887

DOI: 10.5120/ijca2016907754